
Quick Challenge: 16-09-2013 , polynomials
From brilliant.org:

Brilliant.org (as many other sites, but this one is ad hoc) provides a lot
of smart and quick mathematical challenges, useful to learn or revise
mathematical concepts and so forth. One can use it even to learn more
about the mathematical framework of the Hp50g, that is very huge. This
is the objective.

Note: we will try to avoid CAS manipulations as much as possible, plus
we will not be so rigorous.

I think that there are many solutions to the problem1, let's try some of
them to see if they work.

Ideas
Note: we suppose (we are trying after all), that the coefficients are

integer numbers.

1. We known that a polynomial that is the square root of another has
its degree equal to an half of the original polynomial degree. So

given
we have that the square root of this polynomial can be written in

the following way for some coefficents d i :

 f  y=d0d1⋅y1d2⋅y2 . We can try to find these coefficients,

for the given case, how? We are not rigorous here, so we can do a

program that compares the value for  f  y 2 and f  y  , for

a fixed set of y values, trying values of a ,b ,d0,d1,d2 . That

needs a lot of time but should solve the problem2.

2. The f  y  polynomial has four roots, while  f  y has two of

1 Of course between these there is a quick and elegant solution like: if we
can write the given polynomial as f  y 2 and we know that f  y  is

a polynomial, then we have that f  y =d0d1⋅y1d2⋅y2 . Thus

f  y 2=d0d1⋅y1d2⋅y22 , we equating coefficients with the given

polynomial and so we have the solution. But this solution is achieved
without much number crunching, is “too human”. We want, instead, to let
the calculator find the solution using its math library.

2 As I always said: in the worst case a programmer is a bad
mathematician, finding solutions by brute force.

http://www.brilliant.org/

them. Nevertheless, with the right coefficients, both roots of

 f  y are included in the roots of f  y  3. Moreover if f  y 
is the square of a second degree polynomial (then with two roots),

we have that f  y = g y2= y−r12⋅ y−r22 ; so we need to

test only a ,b until we find two couples of equal roots (or even a
single root repeated four times). With this idea we will explore
some commands to find roots of polynomials.

Implementations
Note: the actual code is attached to the pdf version of this document.

The idea no1 is almost unfeasible, it took too much time if we try, in a

trivial way, all the values in a fixed interval for a ,b ,d0,d1,d2 . Then we

discard this approach.

The idea no2 is, eventually, similar to idea no1, because we try values

only for a ,b instead of a ,b ,d0,d1,d2 , but this approach can take a lot

of time too. For example if we find roots of f  y  for all ordered

couples a ,b , where a ,b∈[−100,100]⊂ℕ , in the worst case the
calculator need to find roots of around 40'000 polynomials.

So, these two ideas are not satisfactory, we need to explore more the
math library of hp50g to find more feasible solutions.

3 Roots can be in pair of complex numbers, remember that exist a
statement which assert: if a polynomial with real coefficients have a
complex root, there it has also another complex root that is the
conjugate of the former. (Even the hp50g user guide, that with 800+ page,
reports it: page 6-6,6-7.)

Appendix

Tools used
● Staroffice 8 (that is a pain but latex won't apply easily the

opentype/truetype font. Word 2007+ is the best4 actually :/ , but I
can't use it now)

● Codecogs , an online equation editor.

● Offside as font. Cambria as font for formulas.

● Paint.net, to edit some images.

● MathBin to save the formulas done with codecogs.

● Hp 50g graphing calculator to test the ideas.

● Debug4x to write RPL code for the 50g.

Versions
● 16.09.2013 first draft with two ideas

● 17.09.2013-18.09.2013 small changes

4 typographically

http://www.codecogs.com/latex/eqneditor.php

	Quick Challenge: 16-09-2013 , polynomials
	Ideas
	Implementations

	Appendix
	Tools used
	Versions

%%HP: T(0)A(D)F(.);

@ You may edit the T(0)A(D)F(.) parts.

@ The earlier parts of the line are used by Debug4x.

@given the polynomial

@ f(y) = y^4 + 2*y^3 + a*y^2+ 2y+ b

@ find a and b so f(y) can be written

@ as g(y)^2 where g(y) is also a polynomial.

@ Then compute 2a+9b

@First try, brute force given a set of points.

«

 «

 PUSH @save flags

 -105 SF @approx

 1 100 @try 100 values for the y

 FOR y

 @assuming that the coefficents are integer

 @and are "small"

 -100 100

 FOR a

 -100 100

 FOR b

 @naaa too complicated, there

 @will be a similar search also for

 @(d_i)s.

 @»»»Let's drop this solution.«««

 @»»»Let's drop this solution.«««

 @»»»Let's drop this solution.«««

 NEXT

 NEXT

 NEXT

 POP @restore

 »

»

%%HP: T(0)A(D)F(.);

@ You may edit the T(0)A(D)F(.) parts.

@ The earlier parts of the line are used by Debug4x.

@given the polynomial

@ f(y) = y^4 + 2*y^3 + a*y^2+ 2y+ b

@ find a and b so f(y) can be written

@ as g(y)^2 where g(y) is also a polynomial.

@ Then compute 2a+9b

@First try, brute force given a set of points.

«

 @rotation list program

 0 @sol

 0 @aSol

 0 @bSol

 �

 rotList

 sol

 aSol

 bSol

 «

 PUSH @save flags

 -105 SF @approx

 -103 SF @complex on (for complex solutions with solve)

 @assuming that wanted coefficents are integer

 @and are "small"

 -100 100 @try 100 values for the a

 FOR a

 -100 100

 FOR b

 'y' PURGE @purge before the call to the solver function

 'y^4 + 2*y^3 + a*y^2 + 2*y + b'

 EVAL @put in the values for a and b

 'y'

 SOLVE

 @now we have a list with roots

 'sol' STO

 sol SIZE

 IF

 4 == @if there are 4 roots

 THEN

 @rotate the list and compare the list

 @since we should have at least two pair of equal roots

 @then we need rotations until we get the same list

 @by rotation itself

 1 3

 FOR z

 IF

 sol

 sol z rotList EVAL

 SAME

 THEN

 @exit

 4 'z' STO

 @save solution

 a 'aSol' STO

 b 'bSol' STO

 @exit also from other loops

 101 'a' STO

 101 'b' STO

 END

 NEXT

 END

 NEXT

 NEXT

 aSol

 bSol

 POP @restore

 »

»

%%HP: T(0)A(D)F(.);

@ You may edit the T(0)A(D)F(.) parts.

@ The earlier parts of the line are used by Debug4x.

@ a program that rotate the elements in a list

@ input

@ - a list { e_1 ... e_n }

@ - number of rotations: k

@ output

@ { e_k+1 ... e_n e_1 ... e_k}

«

 @input a list

 @numberOfRotations

 0 @sizeL

 �

 rots

 sizeL

 «

 LIST�

 'sizeL' STO

 1 rots

 START

 sizeL ROLL

 NEXT

 sizeL �LIST

 »

»

%%HP: T(0)A(D)F(.);

@ You may edit the T(0)A(D)F(.) parts.

@ The earlier parts of the line are used by Debug4x.

@ a program that unrotate the elements in a list

@ input

@ - a list { e_n ... e_1 }

@ - number of unrotations: k

@ output

@ { e_k ... e_1 e_n ... e_k+1}

«

 @input a list

 @numberOfUnRotations

 0 @sizeL

 �

 unrots

 sizeL

 «

 LIST�

 'sizeL' STO

 1 unrots

 START

 sizeL ROLLD

 NEXT

 sizeL �LIST

 »

»

