User Tools

Site Tools


benchmarks:addloop

Calculator Benchmark: Loops of addition

Calculator Benchmark: Loops of addition original entry on MoHPc

Presently in order from fastest to slowest.
This benchmark goes after ONLY goes after one thing: loops of addition.
LBL 01 + GTO 01

where the stack contains 0 1 1 1 on 4 level machines. In other words, start with 0 and do repeated additions of 1 for 60 seconds. What is the result? Alternative methods that count 1 at a time are allowed and included, such as going through an ISG / DSE loop. Long repeated programs of + + + + are not.

Physical calculators

Notation

  • Calculator used and firmware/software
  • The count after 60 seconds of execution
  • The program code used.
  1. HP 50g 2.15, ARM ASM, 75MHz
    • Count: 593'615'984
      • Note: After toying around with the addloop benchmark, I found out that my optimization does really help a lot. After throwing it out (delete the lines that say TST R2,$F and BNE loop) I just got 158998232. And when I increased the number of additions between the ON key checks from 16 to 256 (by replacing $F with $FF), I even got 728'608'512. The keyboard was still responsive enough, it “only” checked the ON key about 47000 times per second. 3298
    • Note: I made a small optimisation: the ON key is only checked when the lowest 4 bits of the counter are 0. This avoids some memory accesses (ARM I/O is always memory-mapped) without losing too much precision - after all, I stopped it while looking at a normal clock. Also, I used two registers for the counter because I feared a single register would overflow. This was not the case, but as the result showed, 8 minutes would have made it overflow.
    • Code: 1)
  2. HP 50g 2.15, HPGCC, 75MHz
    • Count: 161,722,281
    • #include <hpgcc49.h> 
      int main(void) 
      {     
        unsigned int c=0;     
        unsigned int volatile * GPFDAT = (int*) 0x7A00054;
       
        sys_slowOff();     //press ON to stop     
        while(!(*GPFDAT&1))         
            c++;     
        sat_push_zint_llong(c);
        return 0; 
      } 
  3. Ti-89 Titanium, GCC4TI, HW4 running AMS 3.10 patched with my tiosmod+amspatch
    • Count:
      • around 25'000'000 for addloop 1 (using the CPU's registers)
      • around 9'800'000 for addloop2 (using also the ram)
    • Notes:
      • building them requires GCC4TI, they won't compile with the older, unmaintained and much harder to install TIGCC.
      • the main loop is a tiny code snippet buried into the rest of accuracy-increasing measures and dealing with the consequences of pressing the ON key;
      • the main loop in addloop1 is a 1:1 copy of that of the HP-50g benchmark;
      • the main loop in addloop2 is closer to interpreted languages, since at least, the variable is read from + written to memory, and it shows ~2.5x slowdown.
    • Code: see the note 2)
  4. HP-12C+, Scott’s custom firmware
    • Count: 10,794,647
    • Do { ++x; } while ((((*(unsigned long int*)PIOC_PDSR) & c_mask)==c_mask)); 
  5. Casio fx-CG 10 PRIZM, OS version 01.04.3200, C PrizmSDK 3)
    • Count:
      • 6'921'042 overclocked to 94.3MHz (max overclocking without freezing)
      • 4'685'089 @58mhz with some improvements on keyupdate Flyingfisch
      • 4'246'899 default 58Mhz
    • Note: AC/on displays value of int i, MENU exits
    • Code: see the note 4)
  6. HP48G/GX/G+ version R ROM models Saturn ASM – 8x loop unrolling
    • Count: 6,784,080 5)
    •  
              C=0     W
              P=      5
              l1      C=C+1   A
              GOC     l2
              C=C+1   A
              GOC     l2
              C=C+1   A
              GOC     l2
              C=C+1   A
              GOC     l2
              C=C+1   A
              GOC     l2
              C=C+1   A
              GOC     l2
              C=C+1   A
              GOC     l2
              C=C+1   A
              GOC     l2
              C=C+1   A
              GONC    l1
      l2      C=C+1   P
              GONC    l1
    • Code: 6)
  7. Hp50g Saturn ASM
    • Count: 6,469,858 OS version 2.15 with HPGCC3 patch 75MHz. 7)
    • CODE
      GOSBVL SAVPTR
      D0=80EAB ;ATTNFLG
      A=0.W
      *loop
      A+1.W
      C=DAT0.A
      ?C=0.A
      GOYES *loop
      GOSBVL GETPTR
      P=15
      GOVLNG PUSHhxsLoop
      ENDCODE
  8. Prime: v2013.8.13
    • Count: 6,646,300
    • export LOOP()
      begin
       A:=0;
       for A from 1 to 1E9 do
       end;
      end;

Recall A after ON to stop running on 1 min. Average of several runs.

  1. HP48G/GX/G+ version R ROM models Saturn ASM
    • Count: 4,383,185 8)
    •         P=      5
              C=0     W
      l1      C=C+1   A
              GONC    l1
              C=C+1   P
              GONC    l1
  2. HP-71B USA:2504A00223 HP71:1BBBB FTH:1A, year of production 1984?
    • Count: 1,069,543
    • Code: see the note 9)
  3. Hp39gII
    • Count: 1,062,108 10)
    • EXPORT LOOP()
      BEGIN
       A:=0;
       FOR A FROM 1 TO 1E9 DO END;
      END;
    • Count: ~640,000 11)
    • EXPORT ADDLOOP()
      BEGIN
        A:=0;
        REPEAT
          A:=A+1;
        UNTIL 0;
      END;
  4. Casio fx-CG 10 PRIZM, OS version 01.04.3200, LuaZM 12)
    • Count: 893207 sec overclocked to 94.3MHz (max overclocking without freezing
    • Count: 547223 sec default 58Mhz
    • Note: When running this code, note that it breaks when AC/on is pressed. I used the fastest Getkey routine for PRIZM, I may try a test directly polling the RTC in the future.
    • zmg.keyDirectPoll()
      for i=1,100000000000 do
        zmg.keyDirectPoll()
          if zmg.keyDirect(10)>0 then print(i) break end
      end
  5. HP 30b with TSTSYS ON
    • Count: 531,131
    •  
      LBL 00 ISG 0 Stop GOTO 00, with 0 pre-stored in 0. Result indicates count of loops in one minute. Each loop adds 1 to value in memory 0.
      (as first program in memory)
  6. HP 30b 13)
    • Count: ~415.000 with crystal enabled, 340.000 without
    • INC X
      BACK 01
  7. DM42 -USB connected screen turned off. RPN
    • Count: 373,166 14)
    • 01 LBL "xxx"
      02 "RefLCD"
      03 ASTO ST L
      04 RCL IND ST L
      05 STO 00
      06 0 STO IND ST L
      07 1E7
      08 ENTER
      09 LBL 00
      10 DSE ST X
      11 GTO 00
      12 ASTO ST L
      13 RCL 00
      14 STO IND ST L
      15 END
  8. FX-9860G SD Fast Mode
    • Count: 370,230
    • Code: Lbl 0 : Isz A : Goto 0
  9. HP 34s Build 1099
    • Count: 272,538
    • Code: LBL A, +, BACK 01
  10. FX-9860G SD Fast Mode
    • Count: 237,780
    • Code: Lbl 0 : Ans+1 : Goto 0
  11. HP 30b with TSTSYS ON
    • Count: 222,578
    • Code: LBL 00 + GOTO 00
      (as first program in memory)
  12. HP 30b with TSTSYS ON
    • Count: 209,038
    • Code: LBL 00 STO+0 GOTO 00 with 0 pre-stored in 0 and 1’s filling the stack
      (as first program in memory)
  13. FX-9860G SD Fast Mode
    • Count: 206,250
    • Code: 0→A : Lbl 0 : A+1→A : Goto 0
  14. FX-9860G SD
    • Count: 177,230
    • Code: Lbl 0 : Isz A : Goto 0
  15. HP 50g (SysRPL bint)
    • Count: 153,421 OS version 2.15 with HPGCC3 patch 75MHz.15)
    • Code: :: BINT0 BEGIN #1+ ATTN? UNTIL UNCOERCE ;
    • Count: 124,445
    • Code: !NO CODE !RPL :: ZERO BEGIN #1+ GETTOUCH UNTIL DROP ; @
  16. FX-9860G SD
    • Count: 110,140
    • Code: Lbl 0 : Ans+1 : Goto 0
  17. FX-9860G SD
    • Count: 97,950
    • Code: 0→A : Lbl 0 : A+1→A : Goto 0
  18. WP 34s Stack depth 4
    • LBL'XYZ' + GTO'XYZ'             90891
      LBL A    + GTO A                90675
      LBL 00   + GTO 00               90369
  19. Casio fx-CG 10 PRIZM with CASIO-BASIC 16)
    • note: Timing done by hand with a stopwatch, may be off by as much as half a second.
    • Count: 85074 overclocked to 94.3MHz, OS version 01.04.3200
    • For 1->I To 1000000000
      Next
          
    • Count: 54006 overclocked to 94.3MHz (max overclocking without freezing), OS version 01.04.3200
    • 0->S run in Run-Mat before timing
      While 1
      Isz S
      WhileEnd
          
    • Count: 51844 clocked at default 58MHz, OS version 01.04.3200
    • For 1->I To 1000000000
      Next
          
    • Count: 33012 clocked at default 58MHz, OS version 01.04.3200
    •  0->S run in Run-Mat before timing
       While 1
       Isz S
       WhileEnd
          
    • Count: 22658 clocked at default 58MHz, OS version 01.04.3200
    • 0->S
      While 1
      S+1->S
      WhileEnd
          
  20. HP 12c+
    • Count: 78,640
    • Code: + GTO 01
  21. WP 34s Stack depth 8
    • LBL 00   + GTO 00               78209
  22. HP 30b
    • Count: 72,517
    • Code: LBL 00 + GOTO 00
      (as first program in memory)
  23. HP 9825 B
    • Count: 59,568
    • Code: 0→A; “start”; A+1→A; gto “start”; end
  24. HP 15c le
    • + x=0?		59006 or 59182
      ISG 00		41062 or 41048
      ISG  I		40746
      ISG .9		40922
  25. HP 50g (SysRPL floating point)
    • Count: 56,994
    • Code: !NO CODE !RPL :: BEGIN %1+ GETTOUCH UNTIL DROP ; @
  26. Casio fx-9860G Slim
    • Count: 55,924
    • Code: 0→A Lbl 0 A+1→A Goto 0
  27. HP-9100A SERIAL NUMBER 816-01071 (1971?)
    • Count: 49,391
    • Code: +, GO TO 00
  28. hp 15c le stopped by hand, maybe 2 s +/-
    • Count: ~ 48,000
    • LBL  E + GTO  E		48823
      LBL 09 + GTO 09		48763
      LBL  A + GTO  A		48721
      LBL 01 + GTO 01		48509
      LBL .9 + GTO .9		44448
      LBL .1 + GTO .1		44083
  29. HP 9815S
    • Count: 47,592
    • Code: 000 + 001 GOTO 000
  30. HP-9100B
    • Count: 47,394
    • Code: +, GO TO, 0, 0
  31. HP-71B Forth Xerxes:
    • COUNT: 46,575
    • Forth
      : XERXES 1 SWAP 0 DO 1+ LOOP ;
      46575 XERXES DROP
      BYE
  32. HP 50g
    • Count: 31,849
    • Code: 1. « DO 1. + UNTIL 0. END »
  33. HP 9815A/S
    • Count: 31,156
    • Code; LBL, A, 1, +, GTO A
  34. HP 48gII Exact mode (old version)
    • Count: 28,160
    • Code: 1. « DO 1. + UNTIL 0. END » EVAL
  35. HP 48gII
    • Count: 26,439 Approx Mode
    • Code: « WHILE 1 REPEAT 1. + END »
  36. TI-83+ SE
    • Count: 24,840
    • Code: Lbl 0 : Ans+1 : Goto 0
  37. HP 85
    • Count: 23,605
    • Code: 10 Let A=0; 20 Let A=A+1; 30 goto 20; 40 END
  38. Sharp EL-9900
    • Count: 23,483
    • Code: Label X A+1⇒A Goto X
  39. HP-75C (1982)
    • Count: 21,717
    • Code: &#8232;10 A=0&#8232;20 A=A+1 @ GOTO 20&#8232;30 END
  40. TI-81
    • Count: 20,191
    • Code: Lbl A : Ans + 1 : Goto A : End
  41. TI-83
    • Count: 19,020 17)
    • Code: :For(I,1,99999) :End
    • Count: 12,986
    • Code: Lbl B: ans +1: goto B
  42. Casio fx-9750G Plus rom 1.00 @ 4mhz with CASIO-BASIC 18)
    • note: Timing done by hand with a stopwatch, may be off by as much as half a second.
    • Count: 16526
    • 0->S run in Run-Mat before timing
      While 1
      Isz S
      WhileEnd
          
    • Count: 7561
    • 0->S
      While 1
      S+1->S
      WhileEnd
          
  43. TI-85
    • Count 15,490 19)
    • Code: :For(I,1,99999) :End
    • Count 11,100
    • Code: Lbl A : Ans + 1 : Goto A : End
  44. Casio FX-7500G
    • Count: 15,364
    • Code: Lbl 1 Isz A Goto 1
  45. HP 9810A
    • Count: 15,355
    • Code LBL, 1, +, GTO, 1
  46. TI-81
    • Count: 15,116
    • Code: Lbl A : B + 1 > B : Goto A : End
  47. TI-84 Silver Edition
    • Count: 13,838
    • Code: Lbl 1:A+1→A: Goto 1
  48. Casio Algebra FX 2.0 rom 1.05 clock around 24 mhz 20)
    • note: Timing done by hand with a stopwatch, may be off by as much as half a second.
    • Count: 12941
    • 0->S run in Run-Mat before timing
      While 1
      Isz S
      WhileEnd
          
    • Count: 8115
    • 0->S
      While 1
      S+1->S
      WhileEnd
          
  49. TI-86
    • Count 12,690 21)
    • Code: :For(I,1,99999) :End
    • Count 5,347
    • Code: Lbl A : Ans + 1 : Goto A : End
  50. TI-89 Titanium (HW 4, AMS 3.10) patched with tiosmod/amspatch
    • note: I reran the TI-89t tests because there are evidently more variables influencing the benchmark results than I realized. The last test was in a folder with various variables in it and other stuff on the home screen. I did the test again from an empty folder and a completely cleared home screen and got these results. 22)
    • Count:
      • In AUTO mode: 12655.33 avg.
      • In EXACT mode: 12649.67 avg.
      • In APPROX mode: 4958.33 avg.
    • Code: For x,1,9999999999:EndFor
    • Count:
      • In AUTO mode: 12372.33 avg.
      • In EXACT mode: 12335.33 avg.
      • In APPROX mode: 8591.33 avg.
    • Code: 0→x:Loop:x+1→x:EndLoop
    • Count:
      • In AUTO mode: 12133 avg.
      • In EXACT mode: 12149.33 avg.
      • In APPROX mode: 8571.33 avg.
    • Code: 0→x:While true:x+1→x:EndWhile
    • Count:
      • In AUTO mode: 11072 avg.
      • In EXACT mode: 12149 avg.
      • In APPROX mode: 8081 avg.
    • Code: 0→x:Lbl a:x+1→x:Goto a
  51. HP 49G
    • Count: 12,351
    • Code: 1. « DO 1. + UNTIL 0. END »
  52. TI CC-40 23)
    • Count: 12,110
    • Code: 10 FOR I = 1 TO 99999 20 NEXT I
  53. The NEWT 41CL logic board upgrade for the HP 41.
    • Code: LBL 00 + GTO 00
    • 1X mode: 1,055
      2X Turbo mode: 1,913
      5X Turbo mode: 4,153
      10X Turbo mode: 6,538
      20X Turbo mode: 9,179
      50X Turbo mode: 12,022
  54. HP 48GX
    • Count: 11,636
    • Code: « WHILE 1 REPEAT 1 + END »
  55. TI-89 Titanium (HW 2, AMS 2.08) patched with tiosmod/amspatch
    • note: I reran the TI-89t tests because there are evidently more variables influencing the benchmark results than I realized. The last test was in a folder with various variables in it and other stuff on the home screen. I did the test again from an empty folder and a completely cleared home screen and got these results. 24)
    • Count:
      • In AUTO mode: 11428 avg.
      • In EXACT mode: 11436 avg.
      • In APPROX mode: 8156 avg.
    • Code: 0→x:Loop:x+1→x:EndLoop
    • Count:
      • In AUTO mode: 11174 avg.
      • In EXACT mode: 11185 avg.
      • In APPROX mode: 8019 avg.
    • Code: 0→x:While true:x+1→x:EndWhile
    • Count:
      • In AUTO mode: 10666 avg.
      • In EXACT mode: 10692 avg.
      • In APPROX mode: 4295 avg.
    • Code: For x,1,9999999999:EndFor
    • Count:
      • In AUTO mode: 10266 avg.
      • In EXACT mode: 11185 avg.
      • In APPROX mode: 7521 avg.
    • Code: 0→x:Lbl a:x+1→x:Goto a
  56. Casio Fx 5800
  57. HP 49G
    • Count: 11,041
    • Code: « WHILE 1. REPEAT 1. + END »
  58. Psion Organiser II CM (1997)
    • Count: 10,949
    • Code: &#8232; LOCAL a&#8232;a=1&#8232;DO&#8232;a=a+1&#8232;UNTIL KEY$=“S”&#8232;PRINT a&#8232;GET
  59. HP-48G
    • Count: 10,726
    • Code: « WHILE 1 REPEAT 1 + END »
  60. Casio FX-7500G
    • Count: 10,692
    • Code: Lbl 1 Ans+1 Goto 1
  61. TI-83+
    • Count 10,385
    • Code: Lbl A : Ans + 1 : Goto A : End
  62. HP 33s
    • Count: 10,097
    • Code: LBL A + GTO A
  63. TI CC-40
    • Count: 9,339
    • Code: 10 A = A+ 1 : 20 GOTO 10
  64. TI-89 Titanium
    • Count: 9,339
    • Program: aa():Prgm:Lbl b:a+1→a:Goto 1: EndPrgm
  65. Sharp EL-5500III 25)
    • Count: 9,140
    • Code: 10 FOR I = 1 TO 9999 : 20 NEXT I
  66. Casio FX-7500G
    • Count: 8,878
    • Code: Lbl 1 A+1→A Goto 1
  67. TI-83
    • Count: 8,106
    • Code: LBL B, A+1»A, goto B
  68. Casio FX-7500G
    • Count: 8,105
    • Code: 0→A Lbl 1 A+1→A Goto 1
  69. Casio fx-7000GB
    • Result: 7,437
    • Code: LbL 1; A+1→A; Goto A
  70. HP-48SX
    • Count: 7,352
    • Code: Unknown
  71. FX-603P
    • Count: 7,240
    • Code: AC 1 + + LBL 0 = GOTO 0
  72. HP-42s FAST MODE S/N 2849A with goose disabled
    • Count: 6,485
    • Code: CLLCD LBL 01 + GTO 01
  73. HP-32s
    • Count: 5,973
    • Code: LBL A + GTO A
  74. TI-92
    • Count: 5,686
    • Code: 0→a Lbl aa a+1→a Goto aa
  75. HP-28S
    • Count: 5,677
    • Code: HOME 1 « WHILE 1 REPEAT 1 + END » EVAL
  76. HP 50G (normal speed)
    • Count: 5,510
    • Code: « 1 + A » stored in A, start with 1 on stack line 1:
  77. HP 35s
    • Count: 5,504
    • Code: B001 LBL B B002 STO+ Z B003 GTO B002, with Z initialized to 0
  78. FX-5800P
    • Count: 5,340
    • Code: Lbl 0 : Ans+1 : Goto 0
  79. PC-1247
    • Count: 5,180
    • Code: 1:A=A+1:GOTO1
  80. HP 20S
    • Count: 4,837
    • Code: LBL A, +, GTO A
  81. HP-32sii
    • Count: 4,715
    • Code: LBL A, +, GTO A
  82. HP-42s FAST MODE S/N 2849A
    • Count: 4,419
    • Code: LBL 01 + GTO 01
  83. HP-71B
    • Count: 4,320
    • 10 DESTROY A @ A=0
      20 ON TIMER #1,60 GOTO 40
      30 A=A+1 @ GOTO 30
      40 DISP A
  84. HP 48gII (Original 3 batteries, NO USB)
    • Count: 4,296
    • Code: « TICKS 8192 60 * + « → t « DO 1. + UNTIL TICKS t >= END » » EVAL »
  85. HP-20S
    • Count: 4,170
    • Code: Unknown
  86. HP 35s
    • Count: 3,652
    • Code: LBL B, +, GTO B001
  87. TI-86
    • Count: 3,612
    • Code: Lbl B:1+A→A:Goto B
  88. HP 39gs
    • Count: 3,607
    • Code: 1→A: DO A+1→A UNTIL A⇐0 END:
  89. Aurora HP 12c clone
    • Count: 3,554
    • Code: +, GTO 01
  90. TI-95
    • Count: 3,350 counts
    • Code: 1 + GTO 0000
  91. Radio Shack PC-2
    • Count: 3,317
    • Code: 1: A=A+1 2: GOTO 1 ; start with 0 stored in A.
  92. Casio fx602p
    • Count: 3,111
    • Code: AC 1++ LBL1 = GOTO1
  93. Sharp EL-9650
    • Count: 3,093
    • Code: Label X A+1⇒A Goto X
  94. HP 48gII (Original 3 batteries, NO USB)
    • Count: 3,088
    • Code: « WHILE 1 REPEAT 1. + END »
  95. TI-80
    • Count 3,080 26)
    • Code: :For(I,1,99999) :End
    • Count 2,279
    • Code: Lbl A : Ans + 1 : Goto A : End
  96. HP-42S with “goose” disabled. Non-fast mode.
    • Count: 3,067
    • Code: CLLCD, LBL 00 + GTO 00
  97. HP 48gii Exact mode (Original 3 batteries, NO USB)
    • Count: 3,036
    • Code: « WHILE 1 REPEAT 1 + END »
  98. HP-42S
    • Count: 2,115
    • Code: LBL 00 + GTO 00
  99. Sharp EL-5500III
    • Count: 2,056
    • Code: 1 A=A+1: GOTO 1
  100. DM-15cc
    • Count max: 2038
    • 000 +
      001 x=0
      Just fill the stack with 1s and hit the R/S key. 
      For this to work all the programs have to be cleared beforehand. 
      Another variant is to start with 0 in register I and use this program:
      
      000 ISG I
      The results are 2038 and 1669 using a DM-15CC. 
  101. HP-41CY Turbo
    • Count: 1,982
    • Code: LBL 00, +, GTO 00
  102. Sharp EL-5500II
    • Count: 1,510
    • Code: 1 A=A+1: GOTO 1
  103. HP 9G
    • Count: 1,470
    • Code: A=0; Lbl 0=; A=A+1; GOTO 0; END
  104. HP 12c plat 25th anniv.
    • Count: 1,435
    • Code: +, Goto 001
  105. HP 12c platinum
    • Count: 1,386
    • Code: + GTO 001
  106. HP41CX Synthetic:
    • Count: 1,298
    •  01 LBL "X”
       02 1			
       03 "SeeRemark"		
      
      
      !!! Synthetic string 9 long Decimal 249 96 7 117 131 131 131 64 178 176
      this places 96 7 in N to be transferred in reg b, resulting in 
      program counter in reg M, byte 6. In reg M synthetic code results 
      in: RDN ENTER ENTER ENTER + GTO 01. The GTO 01 is a COMPILED GTO 
      jumping to the + before it! You can SST this code but the GTO 01 
      takes a long time to reposition! Yes, this can be optimized still a 
      bit, but the loop is using 3 bytes! 
      
      
       04 0
       05 X<> N		
       06 BEEP
       07 STOP
       08 STO b
       09 END
      
      
      INSTRUCTION: READ THIS
      XEQ "X"
      wait until beep, 000000,06 is displayed
      press [R/S] to start counting
      press [R/S] after 60 seconds, write down the count
      perform a GTO .. !!! because the program pointer is in reg M, switching to program mode and TOUCHING A KEY results in MEMORY LOST!
  107. CASIO PB-700
    • Count: 1,282
    • Code: 1: A=A+1 2: GOTO 1 ; start with 0 stored in A.
  108. Sharp PC-1251
    • Count: 1,277
    • Code: 1: A=A+1 2: GOTO 1 ; start with 0 stored in A.
  109. HP41CX:
    • Count 1,075
    • Code: LBL 01 + GTO 01
  110. HP 41c
    • Count: 1,063
    • Code: LBL 01 + GTO 01
  111. TI-59
    • Count: 635
    • Code: 1 + RST
  112. HP-65
    • Count: 578
    • Code: Lbl 1, +, Goto 1
  113. HP-10C
    • Count: 514
    • Code: LBL 0 + GTO 0
  114. HP-25
    • Count: 512
    • Code: 01 + 02 GTO 01
  115. TI-59 starting with 1 in the display
    • Count: 501
    • Code: SUM 00 RST
  116. HP 12c original (mfg. 1985)
    • Count: 500
    • Code: +; GTO 01
  117. TI-57
    • Count: 498
    • Code: + 1 RST
  118. TI-59
    • Count: 492
    • Code: OP20 RST
  119. HP 25
    • Count: 483
    • Code: + GTO 01
  120. TI SR-56
    • Count: 461
    • Code: + 1 = RST
  121. TI SR-52
    • Count: 425
    • Code: + 1 = RST
  122. HP-38C
    • Count: 387
    • Code: + GTO 01
  123. TI 58C
    • Count: 387
    • Code: + 1 = RST
  124. Human hand Tapping + key
    • Count: 370 with m+ key on a sharp el506w
    • Count: 359 with touch calculator of Palm Treo Pro (windows mobile 6.1)
    • Count: 133
  125. HP-29C
    • Count: 361
    • Code: LBL 0; +; GOTO 0
  126. SHARP PC-1211
    • Count: 358
    • Code 1:Z=Z+1:GOTO 1 (starting with Z=0)
  127. HP 11c
    • Count: 353
    • Code: Lbl 1, +, Goto 1
  128. TI-59
    • Count: 336
    • Code: 1 + GTO 000
  129. HP-33c (mfg. 1982)
    • Count: 319
    • Code: 01 + 02 GTO 01
  130. HP 67
    • Count: 349
    • Code: 1 CHS STO I + GOTO (i)
  131. HP 55
    • Count: 312
    • Code: + GTO 01
  132. HP-19c
    • Count: 301
    • Code: LBL 1 + GTO 1
  133. HP 15c (mfg. 1983)
    • Count: 297
    • Code: LBL A; +; GTO A
  134. HP 16c: 293 (float 4)
    • Count: 293
    • Code: LBL A + GTO A
  135. HP 34c: (I program) with -1 stored in I
    • Count: 277
    • Code: LBL A + GTO f I
  136. HP 34c (mfg. 1981)
    • Count: 269
    • Code: LBL A; +; GTO A
  137. TI-55
    • Count: 267
    • Code: + 1 RST
  138. HP 34c:
    • Count: 259
    • Code: LBL A + GTO A
  139. Odhner in hands of T. Klemm on 10 Sept 2013, 5:46 p.m.
    • Count: 251.
  140. HP 16c
    • Count: 245
    • Code: Lbl 1, +, Goto 1
  141. HP 16c: 230 (decimal, wsize 16, 2-complement)
    • Count: 230
    • Code: LBL A + GTO A
  142. HP 67
    • Count: 226
    • Code: LBL 1 + GTO 1
  143. HP-97
    • Count: 223
    • Code: LBL1; +; GOTO 1
  144. Texas Instrument TI-57LCD
    • Count: 216
    • Code: LBL_01 1 + GTO_01
  145. TI-66
    • Count: 210
    • Code: + 1 = RST
  146. TI-65
    • Count: 205
    • Code: 1 + RST
  147. Texas Instrument TI-57LCD
    • Count: 195
    • Code: 1 + RST
  148. TI-55
    • Count: 189
    • Code: + 1 = RST
  149. TI BA 55
    • Count: 139
    • Code: + 1 = RST
  150. Elektronika MK-61
    • Count: 106
    • Code: + GSB 00
  151. TI-62
    • Count: 100
    • Code: 1 + RST
  152. Commodore P50
    • Count: 97
    • Code: + 1 = SKZ GOTO 00 R/S ( Start with -97 )
  153. TI-59 with RPN Module:
    • Count: 74
    •   HP-67 code: LBL 1 + 1 GOTO 1
        The RPN Module translated that to:
        LBL LNX PGM 51 A 1 PGM 12 A GTO LNX
        

Needs confirmation

  1. Casio fx-9860g Slim Compiled C program SDK V 1.0
    • Why does it need a confirmation?
      • Lionel Debroux observations: It doesn't know the value after 60 seconds, but it knows the value at the end of the loop, which is written in the code. For years, optimizing compilers have been able to recognize a number of loop idioms, especially such simple ones as
        do {
            counter++;
          } while (counter < 349700000);

        Such code is turned into

        counter = 349700000;

        by optimizing compilers; then, Dead Store Elimination will erase this assignment and the counter variable, since it's not used later.
        Unless the compiler used for the fx-9860g absolutely stinks, or the benchmark is compiled without optimization, the program should print “end” immediately.

    • Note: Is it maybe in fast mode? (118mhz instead of 29)
    • Count: 349,700,000
    • int AddIn_main(int isAppli, unsigned short OptionNum)
      {
        unsigned int key;
        unsigned long int counter = 0;
        Bdisp_AllClr_DDVRAM();
        do {
          counter++;
        } while (counter < 349700000);
        locate(1,5);
        Print((unsigned char*)" end");
        while(1){
          GetKey(&key);
        }
       
        return 1;
      } 
  2. HP-12C+, Scott’s custom integer firmware, overclocked to 48.75 MHz
    • Why does it need a confirmation?
      • There is no code about it
    • Count: 261,602,459
    • Code: Unspecified

Emulators on handheld/mobile devices

Notation

  • Handheld device used - emulator used and version
  • The count after 60 seconds of execution
  • The program code used.
1)
CODE
GOSBVL SAVPTR
SKUB {
*start
!ARM
STMDB sp! {R4 R5 LP}
MOV R2,0
MOV R3,0
MOV R4,$7A00000 ;the lowest bit of $7A00054 is 1 if ON is pressed
ADD R4,R4,$54 ;the address needs to be loaded in two steps because ARM can only load 8 bits at a time
*loop
ADD R2,R2,1
ADC R3,R3,0
TST R2,$F
BNE loop
LDRB R5,[R4]
TST R5,1
BEQ loop
STR R2,[R1,#2316] ;Saturn A register, lower half
STR R3,[R1,#2320] ;Saturn A register, upper half
LDMIA sp! {R4 R5 PC}
!ASM
*end
}
C=RSTK
D0=C
D1=80100
LC(5)end-start
MOVEDN
LC 80100
INTOFF
ARMSAT
INTON
GOSBVL GETPTR
P=15
GOVLNG PUSHhxsLoop
ENDCODE
2)
Build script: ( all flags but -O3 reduce size but have no effect on code generation for the main loop)
tigcc -v -O3 -Wall -W -mpcrel --optimize-code --cut-ranges --reorder-sections --remove-unused --merge-constants -fmerge-all-constants -Wa,--all-relocs -Wa,-l -fverbose-asm -save-temps -o addloop1 addloop_register_polling.c
tigcc -v -O3 -Wall -W -mpcrel --optimize-code --cut-ranges --reorder-sections --remove-unused --merge-constants -fmerge-all-constants -Wa,--all-relocs -Wa,-l -fverbose-asm -save-temps -o addloop2 addloop_memory_polling.c
 
File addloop_register_polling.c:
// addloop_register_polling.c: optimize counting to the maximum, through keeping the value in a register and writing the main loop in ASM, so as to avoid compiler pessimizations.
 
#define MIN_AMS 101
#define USE_TI89
#define USE_TI92P
#define USE_V200
#define USE_TI89T
#define NO_CALC_DETECT
#define OPTIMIZE_ROM_CALLS
#define RETURN_VALUE
 
#include <stdint.h>
#include <system.h>
#include <args.h>
#include <estack.h>
#include <peekpoke.h>
#include <intr.h>
 
#define TIMER_START_VAL (100000UL)
 
void _main(void) {
    uint32_t i = 0; // We don't want to
    short orig_rate = PRG_getRate();
    unsigned short orig_start = PRG_getStart();
    unsigned char * ON_key_status = (unsigned char *)0x60001A;
    unsigned long val = 0;
 
    // Make the system timer an order of magnitude more precise;
    // NOTE: this code assumes a HW2+ TI-68k, i.e. anything since 1999.
    PRG_setRate(1); // Increment counter at a rate of 2^19/2^9 Hz
    PRG_setStart(0xCE); // Trigger the interrupt every 257 - 0xCE = 51 increments ~ 20.07 Hz.
 
    // The PRG_getStart() above effectively waited for the interrupt to trigger, so we don't need another wait.
    /*OSRegisterTimer(USER_TIMER, 1);
    while (!OSTimerExpired(USER_TIMER));
    OSFreeTimer(USER_TIMER);*/
    OSRegisterTimer(USER_TIMER, TIMER_START_VAL);
 
    // Main loop :)
    // The assembly snippet is the equivalent of
    /*
    do {
        i++;
    } while (*(volatile unsigned char *)ON_key_status & 2);
    */
    // but it lets no compiler pessimization, such as constant-propagating the ON_key_status variable away (sigh), occur.
    asm volatile("lloop:\n"
    "    addq.l #1, %0\n"
    "    btst.b #1, (%1)\n"
    "    bne.s lloop\n"
        : "=d"(i) : "a"(ON_key_status));
 
    // Retrieve timer value.
    val = TIMER_START_VAL - OSTimerCurVal(USER_TIMER);
    OSFreeTimer(USER_TIMER);
 
    // Give some time for the ON key to come back up.
    OSRegisterTimer(USER_TIMER, 4);
    while (!OSTimerExpired(USER_TIMER));
    OSFreeTimer(USER_TIMER);
    OSClearBreak();
 
    // Push arguments onto the RPN stack: clean arguments up, then create a list.
    while (GetArgType (top_estack) != END_TAG) {
        top_estack = next_expression_index (top_estack);
    }
    top_estack--;
    push_END_TAG();
    push_longint(i);
    push_longint(val);
    push_LIST_TAG();
 
    // Restore old system state.
    PRG_setRate(orig_rate);
    PRG_setStart(orig_start);
}
 
File addloop_memory_polling.c:
// addloop_memory_polling.c: don't optimize counting that much, through "volatile" which triggers three instructions instead of just one for dealing with memory and an address which gets constant-propagated instead of being kept in a register.
 
#define MIN_AMS 101
#define USE_TI89
#define USE_TI92P
#define USE_V200
#define USE_TI89T
#define NO_CALC_DETECT
#define OPTIMIZE_ROM_CALLS
#define RETURN_VALUE
 
#include <stdint.h>
#include <system.h>
#include <args.h>
#include <estack.h>
#include <peekpoke.h>
#include <intr.h>
 
#define TIMER_START_VAL (100000UL)
 
void _main(void) {
    volatile uint32_t i = 0;
    short orig_rate = PRG_getRate();
    unsigned short orig_start = PRG_getStart();
    volatile unsigned char * ON_key_status = (volatile unsigned char *)0x60001A;
    unsigned long val = 0;
 
    // Make the system timer an order of magnitude more precise;
    // NOTE: this code assumes a HW2+ TI-68k, i.e. anything since 1999.
    PRG_setRate(1); // Increment counter at a rate of 2^19/2^9 Hz
    PRG_setStart(0xCE); // Trigger the interrupt every 257 - 0xCE = 51 increments ~ 20.07 Hz.
 
    // The PRG_getStart() above effectively waited for the interrupt to trigger, so we don't need another wait.
    /*OSRegisterTimer(USER_TIMER, 1);
    while (!OSTimerExpired(USER_TIMER));
    OSFreeTimer(USER_TIMER);*/
    OSRegisterTimer(USER_TIMER, TIMER_START_VAL);
 
    // Main loop :)
    // Let compiler pessimizations inherent to "volatile", such as:
    // * reading and writing i in memory instead of incrementing it directly;
    // * constant-propagating the ON_key_status variable away.
    // occur.
    do {
        i++;
    } while (*ON_key_status & 2);
 
    // Retrieve timer value.
    val = TIMER_START_VAL - OSTimerCurVal(USER_TIMER);
    OSFreeTimer(USER_TIMER);
 
    // Give some time for the ON key to come back up.
    OSRegisterTimer(USER_TIMER, 4);
    while (!OSTimerExpired(USER_TIMER));
    OSFreeTimer(USER_TIMER);
    OSClearBreak();
 
    // Push arguments onto the RPN stack: clean arguments up, then create a list.
    while (GetArgType (top_estack) != END_TAG) {
        top_estack = next_expression_index (top_estack);
    }
    top_estack--;
    push_END_TAG();
    push_longint(i);
    push_longint(val);
    push_LIST_TAG();
 
    // Restore old system state.
    PRG_setRate(orig_rate);
    PRG_setStart(orig_start);
}
4)
#include <display_syscalls.h>
#include <keyboard_syscalls.h>
#include <keyboard.hpp>
#include <color.h>
 
// Getkey routine
const unsigned short* keyboard_register = (unsigned short*)0xA44B0000;
unsigned short lastkey[8];
unsigned short holdkey[8];
 
void keyupdate(void) {
  memcpy(holdkey, lastkey, sizeof(unsigned short)*8);
  memcpy(lastkey, keyboard_register, sizeof(unsigned short)*8);
}
int keydownlast(int basic_keycode) {
  int row, col, word, bit;
  row = basic_keycode%10;
  col = basic_keycode/10-1;
  word = row>>1;
  bit = col + 8*(row&1);
  return (0 != (lastkey[word] & 1<<bit));
}
int keydownhold(int basic_keycode) {
  int row, col, word, bit;
  row = basic_keycode%10;
  col = basic_keycode/10-1;
  word = row>>1;
  bit = col + 8*(row&1);
  return (0 != (holdkey[word] & 1<<bit));
}
 
int main() {
  int i=0;
  int key;
  // clear screen
  Bdisp_AllClr_VRAM();
  while (1) {
    keyupdate();
    // increment i
    i++;
    if (keydownlast(KEY_PRGM_ACON)) {
      char buffer[10];
      strcpy(buffer," ");
      itoa(i, buffer+2);
      PrintXY(1,1,buffer,0,COLOR_BLACK);
      Bdisp_PutDisp_DD();
    }
     // handle [menu]
     if (keydownlast(KEY_PRGM_MENU)) {
     GetKey(&key);
    }
  }
 
  return 1;
}
6)
ASSEMBLE
        NIBASC /HPHP48-R/
RPL


CODE
cbcnfgrtn	EQU	#99CD
cartn		EQU	#1C3D
uncnfgrtnl	EQU	#7C027
uncnfgrtnh      EQU     #805F9
cnfgrtnl	EQU	#99CF
cnfgrtnh        EQU     #805CF

*X1          EQU 1
*X4          EQU 1
*X8          EQU 1

        GOSBVL  =SAVPTR
        GOSBVL  =DisableIntr * Can't have an interrupt while IRAM is in the process of being reconfigured, it's                     
                             * not at address #80000 or if it's temporarily malformed due to the ISR code
        GOSBVL  =DispOff     * Turn off the display
              
        D0=(5)	=IRAMMASK    * Get size mask for IRAM and save it
        A=DAT0	A
	R4=A 
        GOSUB   end_isr      * Push address of ISR to the hardware return stack...
start_isr
        ST=0    0
        GONC    chktimer     * No carry detected -- leave ST.0 set to 0
        ST=1    0            * Carry detected -- set ST.0 to 1
chktimer
        D0=(5)  =TIMERCTRL.2
	A=DAT0  1            * Check if TIMER2 requires service
	?ABIT=1 3               
	GOYES   done         * If so we're done... ( branch back to cleanup code in IRAM )
        ?ST=1   0
        GOYES   cry1         * Preserve carry of interrupting code 
cry1    RTI                  * Return and re-enable interrupts
done    ?ST=0   0
        GOYES   nocarry
        C=C+1   P            * Adjust count as we've interrupted the add loop after C.A overflows
nocarry 
        R2=C                 * save count
        CD1EX                * retrieve return address and save it to RSTK
        RSTK=C
        CD1EX
        RTN                  * We're done -- branch back
end_isr
         
        C=RSTK               * Grab address of ISR code
        LA(5)   #80000       * Adjust address for post IRAM reconfiguration
        C=C-A   A
        D0=(5)  #8000F       * Address of ISR in IRAM before reconfiguration
        A=DAT0  7            * Save contents of RAM
        R0=A
        LA(2)   #D8          * Write GOVLNG with address of ISR as target
        DAT0=A  2
        D0=D0+  2
        DAT0=C  A
        GOSUB   ++           * Grab return address of code to which to transfer control after IRAM reconfiguration
-       GOTO    + 
++      C=RSTK               * Retrieve address of the previous instruction
        R3=C                 * And save unadjusted address...
	LAHEX	#80000       *
	C=C-A	A            * Adjust address...		
        RSTK=C               * Save return address of post reconfigure code to return stack

        LC(5)   #80000       * Current address of IRAM
        D=C     A            * save it...
        C=R4                 * Size mask...
        B=C     A            * Used by cbcnfgrtn
        A=0     A            * New address is #00000

magic1                       * "magic" IRAM reconfiguration sequence...
        LC(5)   cnfgrtnh
        RSTK=C
        LC(5)   cartn
        RSTK=C
        LC(5)   cbcnfgrtn
        RSTK=C
        LC(5)   uncnfgrtnl
        RSTK=C
        C=D     A
        RTN
magic2
        LC(5)   cnfgrtnl
        RSTK=C
        LC(5)   cartn
        RSTK=C
        LC(5)   cbcnfgrtn
        RSTK=C
        LC(5)   uncnfgrtnh
        RSTK=C
        C=D     A
        RTN        
+       
*        D0=(5)  =TIMERCTRL.2 * Save TIMER2 control reg value
*        A=DAT0  S
*        R1=A.F  S
        GOSUB   WaitForTick  * Wait for TIMER2 to decrement
        P=      7            * Save TIMER2 value
        A=DAT0  WP           *
        R1=A.F  WP
        D0=(5)  =TIMER2      * Set up 60 second TIMER2 countdown
        A=0     W
        P=      0
        LA(5)   #78000
*        LA(5)   #2000        * 1 second countdown for debugging purposes...
        P=      7
        DAT0=A  WP
        P=      0
        D0=(5)  =TIMERCTRL.2 * Enable TIMER2 interrupts
        LA(1)   3
        DAT0=A  1
        
        GOSUB   c1           * Control returns here if TIMER2 requires service and branches to cleanup
        GOTO    cleanup
c1      C=RSTK      
        D1=C                 * Save post-ISR branch address in D1
        
        C=0     W            * Set up regs for inner add loop
        P=      5
        GOSUB   +            * re-enable interrupts
        GOTO    ++
+       RTI
++      
*       GOSBVL   #0000F      * Debugging
** The following first inner add loop code was written by Werner **
 
        IFDEF   X1
l1      C=C+1   A
        GONC    l1
        C=C+1   P
        GONC    l1
        ENDIF
        
        IFDEF   X4           * Unrolled x4
l1      C=C+1   A
        GOC     l2
        C=C+1   A
        GOC     l2
        C=C+1   A
        GOC     l2
        C=C+1   A
        GOC     l2
        C=C+1   A
        GONC    l1
l2      C=C+1   P
        GONC    l1
        ENDIF
        
        IFDEF   X8           * Unrolled x8
l1      C=C+1   A
        GOC     l2
        C=C+1   A
        GOC     l2
        C=C+1   A
        GOC     l2
        C=C+1   A
        GOC     l2
        C=C+1   A
        GOC     l2
        C=C+1   A
        GOC     l2
        C=C+1   A
        GOC     l2
        C=C+1   A
        GOC     l2
        C=C+1   A
        GONC    l1
l2      C=C+1   P
        GONC    l1
        ENDIF
        
cleanup                      * The ISR returns control here when TIMER2 underflows       
        P=      0
        A=R3                 * Retrieve original return address
        LC(5)   (end)-(-)    * Load offset of "end" label
        C=C+A   A            * Add to original address to get address of end
        RSTK=C               * Save end return address to return stack...
        C=0     A            * Current IRAM address...
        D=C     A            * Save it...
        C=R4    A            * Size mask...
        B=C     A            * Used by cbcnfgrtn
        LA(5)   #80000       * New IRAM address...
        GOTO    magic2       * Reconfigure IRAM back to its normal size and location...

end                          * Control returns to here after second IRAM reconfiguration...
        A=R0                 * Retrive previous contents of IRAM at #8000F
        D0=(5)  #8000F
        DAT0=A  7            * Restore previous contents of IRAM
        GOSUB   WaitForTick  * Wait for TIMER2 to decrement before restoring system time
        P=      7            * Recall saved TIMER2 value
        A=R1.F  WP
        P=      0
        LC(5)   #78000       * Adjust TIMER2 value to account for 60 second countdown
*        LC(5)   #2000        * 1 second countdown for debugging purposes
        A=A-C   WP
        DAT0=A  WP           * Restore correct TIMER2 value
        P=      0
*        D0=(5)  =TIMERCTRL.2 * Restore TIMER2 control reg value
*        A=R1.F  S
*        DAT0=A  S
        GOSBVL  =AllowIntr
        GOSBVL  =DispOn      * Turn the display back on...
        A=R2                 * Retrieve count saved in ISR
        P=      15
        GOVLNG  =PUSHhxsLoop * Push it to the stack and loop
        
* Utility subroutine that waits for TIMER2 to decrement
WaitForTick
    D0=(5)  =TIMER2
    P=      7
    C=DAT0  WP
    D=C     WP
-   C=DAT0  WP
    ?D=C    WP
    GOYES   -
    RTN
ENDCODE
9)
 
Forth + Assembler: ADD1 D.

Press any key (except ON) to stop counting. 
Count => double length value on the stack.

First assemble ADD1 into the Forth dictionary:

File: ADD1   
FORTH   
WORD 'ADD1' 
** overflows in about 470 secs .... P= xx where xx>6 gives more time   
P= 6   
C=0 A   
A=0 WP 
LOOP A=A+1 WP   
C=IN         // Keyboard touched (except ON key !)   
?C=0 A   
GOYES LOOP   
D1=D1- 5   
DAT1=A A   
ASR W   
ASR W   
ASR W   
ASR W   
ASR W   
D1=D1- 5   
DAT1=A A   
RTNCC   
END
benchmarks/addloop.txt · Last modified: 2023/11/06 07:27 by jdb2